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Abstract

Heart sound recordings are a key non-invasive tool
to detect both congenital and acquired heart conditions.
As part of the George B. Moody PhysioNet Challenge
2022, we present an approach based on Bidirectional Long
Short-Term Memory (BiLSTM) neural networks for the de-
tection of murmurs and prediction of clinical outcome from
Phonocardiograms (PCGs). We used the homomorphic,
Hilbert, power spectral density, and wavelet envelopes as
signal features, from which we extracted fixed-length seg-
ments of 4 seconds to train the network. Using the official
challenge scoring metrics, our team SmartBeatIT achieved
a murmur weighted accuracy score of 0.757 on the hid-
den test set (ranked 6th out of 40 teams), and an outcome
cost score of 13815 (ranked 25th out of 39 teams). With
5-fold cross-validation on the training set, in the murmur
detection task we obtained sensitivities of 0.827 and 0.312
for the Present and Unknown classes and a specificity of
0.801; and a sensitivity of 0.676 and a specificity of 0.544
in the outcome prediction task.

1. Introduction

The early detection of cardiovascular diseases is pivotal
to prevent complications and premature deaths [1]. This
is particularly challenging in developing countries, where
there is an increased difficulty in the access to both special-
ized and primary health care. The use of automatic meth-
ods for detection of abnormalities based on the Phonocar-
diogram (PCG) could significantly facilitate the early di-
agnosis of both congenital and acquired heart conditions,
as well as revolutionize how we approach health policies
and disease management.

The goal of the George B. Moody PhysioNet Challenge
2022 was to identify, for each patient, whether any mur-
murs are discernible from heart sound recordings obtained
from multiple auscultation locations and detect the clinical
outcome [2, 3]. An in-depth description of the goals of the
challenge and of the dataset can be found in [3, 4].

We present a deep learning approach based on Long
Short-Term Memory networks (LSTM) for the classifica-
tion of heart sounds. LSTMs are a type of recurrent neural
network designed for the processing of sequential data and
allow information to flow from one sample to next. Since
PCG signals are a type of sequential data with a strong
temporal correlation, they can be effectively processed by
LSTMs for both segmentation and classification [5].

2. Methods

We implemented a Bidirectional LSTM (BiLSTM) neu-
ral network that classifies individual unsegmented PCG
recordings based on temporal envelope features.

2.1. Temporal Features Extraction

PCG signals are high-dimensional sequence data, and as
such processing them directly would incur a high compu-
tational cost. For this reason, instead of using the raw sig-
nal segments, we extracted four envelopes with a sampling
frequency of 50 Hz. These not only provide a more com-
pact description of the signals [6], but also reduce noise
and other effects specific to the recording environment [7].

All the recordings were filtered with a 2nd order Butter-
worth bandpass filter with cutoff frequencies of 25 Hz and
400 Hz, and normalized to have zero mean and unit vari-
ance. Then, using the method developed by Springer et al.
[8], we calculated the homomorphic, Hilbert, power spec-
tral density, and Wavelet envelopes, which have different
trade-off levels between noise rejection and amplitude res-
olution [9]. These envelopes were also normalized to have
zero mean and unit variance, and form a 4-dimensional
multivariate time series for each heart sound segment.

Each recording was then decomposed into smaller fixed-
length segments of 4-seconds. These segments still con-
tain multiple cardiac cycles and enough information for the
model to learn, and at the same time are small enough to
allow us to significantly increase the amount of training
data to build a more robust model [10].

A noteworthy aspect is that murmur classes are highly
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Figure 1. Bidirectional LSTM architecture. Each hidden layer has a number of cells equal to the number of timesteps, and
−→
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(t)
i and
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(t)
i are, respectively, the hidden states of the forward and backward layers. x(t) represents the signal envelopes.

imbalanced, which presents a challenge for the training
of deep learning models. The training set contains data
from 942 patients; of those approximately 73.8% belong
to the Absent class, 19% belong to the Present class, and
only 7% belong to the Unknown class. On the other hand,
the outcome classes are balanced between Normal (51.6%)
and Abnormal (48.4%). To deal with the class imbal-
ance in the murmur detection task, for the minority classes
(Present and Unknown) the segments were extracted with
75% overlap. Recordings from patients in the Present class
without an audible murmur were excluded from training.

2.2. BiLSTM Architecture

The architecture of the developed neural network is
shown in Figure 1. It consists of stacked BiLSTM layers
with 64 units. Unlike standard recurrent neural networks,
LSTMs can remember or forget values over arbitrary pe-
riods of time, and thus are able to process long distance
dependencies in the sequential data. This approach also
processes the envelopes in both directions and can exploit
both the past and future information of the signal.

The BiLSTM will read the entire sequence and then
yield a single output, obtained by concatenating the hidden
state of the last sample in the forward layer and the hidden
state of the first sample in the backward layer. This is fol-
lowed by fully connected layers for classification into one

of the available classes. In the last layer, we used the soft-
max activation function for the murmur multiclass classifi-
cation and the sigmoid activation function for the outcome
binary classification [11].

2.3. Implementation

To select the number of stacked BiLSTM layers, we
evaluated the local performance of our model for both
tasks. The training set was split using 5-fold cross valida-
tion, ensuring that recordings from the same patient don’t
appear in two different folds, to avoid overfitting. The
accuracy, sensitivity, specificity, and challenge scores for
each model are presented in Tables 1 and 2.

In the murmur detection task, there is a significant in-
crease in the performance of the model when the num-
ber of BiLSTM layers is increased from 1 to 2. However,
when the number of layers increases from 2 to 3, the per-
formance decreases. Even though deeper models should
be able to learn more complex patterns in the signals, the
small sample size can make the deeper network overfit to
the training set and be unable to generalize to new data.

In the outcome detection task, the performance and
scores of the model are not as correlated to the number
of stacked BiLSTM layers. The best challenge score and
highest sensitivity are obtained with a single layer, but the
highest specificity is obtained with three layers.
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Layers Sen. %
(Present)

Sen. %
(Unknown)

Specificity
%

Challenge
Score %

1 77.6±4.0 24.7±15.1 77.6±5.2 60.0±4.8
2 82.7±3.7 31.2±11.9 80.1±3.1 65.2±4.3
3 78.4±5.0 25.2±11.7 78.4±5.0 60.2±7.4

Table 1. Training set results for the murmur detection task
with different BiLSTM layers. Top results are in bold.

Layers Sensitivity
(%)

Specificity
(%)

Challenge
Score

1 71.1±6.2 53.4±9.3 11532±635
2 67.6±4.9 54.4±6.6 12434±401
3 67.6±5.3 56.2±11.0 12033±1092

Table 2. Training set results for the outcome prediction
task with different BiLSTM layers. Top results are in bold.

The training was done using categorical cross-entropy
as a loss function for murmur detection and binary cross-
entropy for outcome prediction [11]. Given the class im-
balance in the murmur detection task, we applied a weigh-
ing to the loss function to make the model pay more atten-
tion to the under-represented classes: each instance of the
classes Present and Unknown is worth two instances of the
class Absent. Table 3 shows the chosen parameters of the
final BiLSTM implementation for both tasks.

To avoid overfitting, we used early stopping to monitor
the loss of the model on a validation set obtained by ran-
domly dividing the training data in each fold into 90% for
training and 10% for validation. The networks were imple-
mented with the Keras submodule from Tensorflow 2.6.1.

2.4. Multiple Instance Classification

The murmur and outcome classification tasks are cases
of multiple-instance classification, given that each patient
is represented by a set of instances (i.e. the recordings
from the different auscultation locations), but it is the pa-
tient that carries the label [12]. Our approach was to train
the model on individual recordings and then combine the
instance-level decisions for the final patient label.

Network Parameters
Hidden state dimension 64 units
Input segment size 200 samples
Nr. BiLSTM layers 2
Optimizer SGD
Learning rate 10−3

Momentum 0.9
Batch size 512
Max. number of epochs 300

Table 3. Selected parameters to train the BiLSTM.

The neural networks use 4-second segments as input so,
to obtain one classification per recording, we split each sig-
nal into 4-second segments with 50% overlap, and com-
bined the predictions by simply averaging the probabilities
for each class and then selecting the class with the highest
probability.

For the final patient labels, we assumed that a positive
label contains at least one positive instance. In the murmur
classification task, the final label and confidence scores
for each patient were generated by selecting the record-
ing with the highest probability for the Present class, since
it is only necessary that the murmur is audible in one lo-
cation to confirm its presence. Similarly, in the clinical
outcome classification task, the final label and confidence
scores were generated by selecting the recording with the
highest probability for the Abnormal class.

3. Results

In Table 4 we present the sensitivity and specificity met-
rics for both tasks, as evaluated on the public training set
with 5-fold cross-validation.

In the murmur detection task, even though the model
could only reach an average sensitivity of 31.2% for the
Unknown class, the sensitivity for the Present class and
the specificity have high values, above 80%. In Table 5 we
can see that the scores of the murmur detection task in the
official hidden validation and test sets were superior to the
scores obtained with cross-validation on the public data,
which suggests that our model did not overfit to the train-
ing set. On the other hand, in the outcome prediction task,
the model demonstrated low specificity and sensitivity, and
a worse performance on the hidden test set (Table 6).

Murmur detection task
Sensitivity
(Present) %

Sensitivity
(Unknown) %

Specificity
%

82.7±3.7 31.2±11.9 80.1±3.1

Outcome detection task
Sensitivity % Specificity %

67.6±4.9 54.4±6.6

Table 4. Sensitivity and specificity metrics for both tasks
on the public training set with 5-fold cross-validation.

Training Validation Test Ranking
0.652±0.043 0.751 0.757 6/40

Table 5. Challenge weighted accuracy for the murmur
detection task, with ranking on the hidden test set. We used
5-fold cross validation on the public training set, repeated
scoring on the hidden validation set, and one-time scoring
on the hidden test set.
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Training Validation Test Ranking
12434±401 11222 13815 25/39

Table 6. Challenge cost metric scores for the clinical out-
come identification task, with ranking on the hidden test
set. We used 5-fold cross validation on the public training
set, repeated scoring on the hidden validation set, and one-
time scoring on the hidden test set.

4. Discussion and Conclusions

In this work we proposed a model for automated mur-
mur and outcome classification, and benchmarked its per-
formance on the George B. Moody PhysioNet Challenge
2022 dataset. It is based on deep recurrent neural networks
and temporal features, and demonstrated promising perfor-
mance in the detection of murmurs.

In murmur detection, it is clear that the biggest diffi-
culty of our model is the correct prediction of the Unknown
class, which has a low sensitivity (Table 1). A possible ex-
planation is the low sample size, which could make the
instances of this class too varied for the model to learn in
a way that can be generalized for new examples. Another
possible reason is the fact that our model could be able
to reliably identify the presence or absence of murmurs in
these recordings, despite the inferior signal quality.

All the tested models had poor results in the outcome
prediction task, with a low specificity and sensitivity. This
could be due to the fact that the outcome labels result from
an overall assessment of the patient’s condition based on
multiple examinations (such as clinical history, physical
examination, analog auscultation, or echocardiogram), and
not just from auscultation [3]. It is possible that some
of the abnormalities cannot be diagnosed based solely on
PCG data, meaning that the heart sounds do not contain all
the information that is necessary for the model to learn.

Nonetheless, to improve these results, in future work we
could supplement the envelope features with the provided
demographic data, or try to adjust the decision thresholds
to boost the score. We could also explore the use of at-
tention mechanisms, which automatically learn the most
relevant dependencies for each context, regardless of their
distance in the sequence [13].
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